US009226003B2

a2 United States Patent

Parm et al.

US 9,226,003 B2
Dec. 29, 2015

(10) Patent No.:
(45) Date of Patent:

(54) METHOD FOR TRANSMITTING VIDEO
SIGNALS FROM AN APPLICATION ON A
SERVER OVER AN IP NETWORK TO A
CLIENT DEVICE

(75) Inventors: Lauri Parm, Tallinn (EE); Jaanus

Kivistik, Tallinn (EE)
(73) Streamtainment Systems OU, Tallinn
(EE)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 115 days.

@
(22)

Appl. No.: 14/241,123

PCT Filed: Aug. 27,2012

(86) PCT No.:

§371 (D),
(2), (4) Date:

PCT/EP2012/066628

Feb. 26, 2014

(87) PCT Pub. No.: W02013/030166

PCT Pub. Date: Mar. 7,2013

Prior Publication Data

US 2014/0196102 A1l Jul. 10, 2014

(65)

(30) Foreign Application Priority Data

Aug. 26,2011 (EP) 11006978

(51) Int.CL
HO4N 21/234
HO4N 21/2662

(2011.01)
(2011.01)

(Continued)
(52) US.CL

CPC ... HO4N 21/23406 (2013.01); HO4N 21/23418
(2013.01); HO4N 21/2662 (2013.01);

(Continued)

SERVER
application drawing ts

(58) Field of Classification Search
CPC HO4N 21/20; HO4N 21/23406; HO4N
21/23418
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

4,823,108 A
5,241,625 A

4/1989 Pope
8/1993 Epard et al.

(Continued)

FOREIGN PATENT DOCUMENTS

EP 2237526 A1 10/2010
EP 2244182 A2 10/2010

(Continued)
OTHER PUBLICATIONS

EP Search Report dated Feb. 22, 2012 of EP11006978.8.
(Continued)

Primary Examiner — Kyu Chae
(74) Attorney, Agent, or Firm — Maine Cernota & Rardin

(57) ABSTRACT

A method for transmitting a video signal from an application
running on a server over an I[P network to a client device. The
application is drawing its content, in a plurality of sequential
drawing events, into a virtual frame buffer. Simultaneously,
each drawing event is registered in a list of drawing events and
each drawing event is associated with an address (location) of
each area that was affected by this drawing event. The list is
repetitively checked and if any area have changed since pre-
vious periodic check, such area is retrieved, segmented into
blocks of standardized size and transmitted, together with its
address in a frame, over the IP network to the client. On the
client side the encoded blocks are received and combined,
using the address data, into frames of an encoded video
stream that can be directly fed into an industry standard
decoder of client device.

20 Claims, 7 Drawing Sheets

frame burrer In 2 pluralley
of drawing events
00

CLENT

Registering drawing

even:
defining changed area

Repeitevely determning
changed areas from the
list

‘Combining the encoded
blocks Into a full encorled
Image In a storage
708

Storing changed blackin
the autput butfer
704

US 9,226,003 B2
Page 2

(51) Int.CL
HO4N 21/61
HO4N 21/6377
HO4N 21/44
HO4N 21/81
(52) US.CL

(2011.01)
(2011.01)
(2011.01)
(2011.01)

CPC HO4N21/44004 (2013.01); HO4N 21/6125
(2013.01); HO4N 21/6377 (2013.01); HO4N

21/8173 (2013.01)

(56) References Cited

U.S. PATENT DOCUMENTS

5,796,566 A
7,649,937 B2
7,882,172 B2
2003/0093568 Al
2004/0010622 Al
2006/0020710 Al

8/1998
1/2010
2/2011
5/2003
1/2004
1/2006

Sharma et al.
Rabenold et al.
Kodaka et al.
Deshpande
O’Neill
Rabenold

2007/0047657 Al 3/2007 Toma
2007/0268824 Al 11/2007 Kodaka
2009/0080523 Al 3/2009 McDowell
2011/0052090 Al 3/2011 Nonaka

2011/0148891 Al* 6/2011 Paquetteetal. 345/531
2011/0206110 Al 82011 Bivolarsky
2013/0159393 Al* 6/2013 Imaietal. ..o 709/203

FOREIGN PATENT DOCUMENTS

EP 2244183 A2 10/2010

GB 2318956 A 5/1998

JP 2005027193 A 1/2005

KR 20040038388 A 5/2004

WO 0065464 A1 11/2000

WO 2006074110 A2 7/2006
OTHER PUBLICATIONS

PCT Search Report dated Feb. 15, 2013 of PCT/EP2012/066628.

* cited by examiner

U.S. Patent Dec. 29, 2015 Sheet 1 of 7 US 9,226,003 B2

70\

A B C TERMINAL SERVER SENDS BITMAPS:
A,B,C,D,E,F,G,H,1I

60A
D E F —
A|B|DIE

C|F|IG|H|I)
60B

L. ~J
A

FIG 1A (BACKGROUND ART)

LK, LLM,N

. 3 60A>

M| N

A/B|D|E}J

Y
TERMINAL SERVER SENDS BITMAPS:
G

CIFIGIH|I|L

60B

v

FIG 1B (BACKGROUND ART)

[:] L TERMINAL SERVER SENDS BITMAPS:
0,P

60A
M N F j
AlB/plE|IT[R[M|N]O]P

clFlG|H[I]|L

60B

YT

FIG 1C (BACKGROUND ART)

US 9,226,003 B2

Sheet 2 of 7

Dec. 29, 2015

U.S. Patent

(L¥V GNNOYDMNIVE) T 914 Jayngauwel4 Jo ¥00ig 3xid 9Xy9
00¢

| sjexid 9

sjax|d pg

Q0000000000000 000000000000000000000000000Q0000 0
Q00000QA00QG000 0000000000000 2000000000000000 20
R0 a0 D90 800 OB3008 0080 50050000303 903035
-l'llllll"l'--l'-l-"-l-.'-l--llllll-l"-l mmA”f 5O0C - 4 O 3 A 3 fl--.
1 ¢ Q0000000(20000 > 0008000000 00
: DO 000 0000000 000000000000000000C 100
, Q r._mmwun:m:mv 38806 00 00000000 300 0050¢ >0
' (¥4 0000000000¢)O00JTO00) 0OC00000 3000 0
) ¢ M . 2QQ0000 ¢ .1N) 30
" ’. O)
O YOO O) Q00000
' 2iMoniS ejleg amc.._:_m Q 900 29 m
' 40 o019 Agu3 dewyg § en0s 383232
] O¢ hledst
‘ Buipuodsenod +] S
' i 0800 >
: 56z 38 _
_ 244]
] oL 390099
. T X R EE
cobnabnabkunbunbandl) o
[}] 1 1 | [w VOO] u 0
R S
1]¥4 O Y A VUL Y ST = 3338 36008
1] ¥ | [] '] b Y000) OO
T B A e B | 29 23332333283 32B23833
- T 0000000000000 0 X00000000000E000 0800 00
S R S S S S U “ 00000000000000D000 ruum...txi 200000 90000000000 600
v X . ° i R R S e
Yy . Ay < 80 49 0B OBOBIBO0BOE 8838 ¥
Suinbaluial el s=beo¥oNoa u 4 N N@- “l "fh m mv XMX u, 7 LA LIN o4 5 W)
- S S =g 0000000000000 QUTRNY 0000000000090 0OTITIV 00
DA e e e e R
o a0 00058 S R LINCRRV0A L :
[TR T IO IO DS R N © 823 H. 3 Tedetatetolitatatsd, wmn_x.ru. ASAO00¢ .mwrCr.D.)
x- x T==1""7 I_l 060000000000000600006000¢ 0000000000060 000000 00
! ' ' ' ! 1 1 QG0 2000000020000000000000000000000000
N A L VW ..zw“m Y0000 00OO0000000 Q000Q00)QNC .Wm Q000 .N:‘.m
QOLOOVO0QDOOGVL Q00OCRAVVOLOVYIOVICORLOQV00 OO0
— saujua dewyl|q § —| 00000000000000508000000¢ o0 BOB050000000
BO00000000C GG 0000 OOBOAOAC 56000000 mm
060000000000000000000000 000000000000600000000 Y,
Q0000000000000 3000000 ..w...m.” 0000000000
Mr MN«KK AR 0 rmm.. D00 2OO0L nm. N.Wuw..-r ! m"
QQO0C0 R0 0000000 C00000000000G020000 -
08B ¢ S SSD0 O 3¢ S E3ABOABO n“w.:. w" SREBSE
HOOAO0 DO et ledadits AOHOHOOH¢ NOU 3 MN
00A06GA00000C 0000000 C000000 mur.mwmmm wm
0 5000604000 G)000 000000000 0G
220002020000 d0058880 0SS0 °

U.S. Patent

Dec. 29, 2015 Sheet 3 of 7

application drawing its
content into a virtual
frame burrer in a plurality
of drawing events
100

Receiving the encoded
data stream from the IP
network
106

A 4

A

Registering drawing
events in a list with data
of changed blocks
101

Combining the encoded
blocks into a full encoded
image in a storage
107

I

v

periodically checking the
list of drawing events
102

A

periodically retrieving the
full encoded images from
said storage as frames of a
video stream
108

combining the changed

blocks with their address

data into a data stream
103

decoding the video stream
109

!

Encoding the data stream
104

A

A

outputting the video
stream to a display device
110

sending the encoded data
stream to the IP network
105

FIG 3

FIG 4

US 9,226,003 B2

U.S. Patent Dec. 29, 2015 Sheet 4 of 7 US 9,226,003 B2

112
101
~
100 \
125
D v
111 123
\ : 113
126~] 114 | 115 ,.1;)65// 124
1177118 |<119 =
Ed—
120--4.121 [\ 122> 102
\— 127
103 — / 128
A
114 118 119

104 ——— 129
[1 L] /_

105 _—

FIG 5

U.S. Patent Dec. 29, 2015 Sheet 5 of 7 US 9,226,003 B2

106

, /_ 113

S / 132

FIG 6

U.S. Patent

Dec. 29, 2015

SERVER

application drawing its
content into a virtual
frame burrer in a plurality
of drawing events
700

v

Registering drawing
events in a list with data
defining changed area
701

v

Repetitevely determining
changed areas from the
list of drawing events
702

!

Segmentid said changed
areas into blocks of
predetermined size

703

v

Storing changed block in
the output buffer
704

v

Periodically encoding the
changed blocks with their
identification data into
encoded data stream
705

v

Transmitting the encoded
data stream over the IP
network to client device

706

Sheet 6 of 7

Receiving the encoded
data stream from the IP
network
707

4

Combining the encoded
blocks into a full encoded
image in a storage
708

l

periodically retrieving the
full encoded images from
said storage an encoded
video stream
709

US 9,226,003 B2

CLIENT

US 9,226,003 B2

Sheet 7 of 7

Dec. 29, 2015

U.S. Patent

SERVER

725
702

701
Event 724 address (area 727)

Event 723 address (area 726)

.
I Il
=)

712
L=
|
R

N
-

700

v 7 / 7
a
6/ o ~ Ny
= — o~
[~~~ —— M~ ﬂl_ M~
/] _ —
1 - o —)
r- Oera 1| S pa
~N ~ o~ ~
T
< ~ o
— ln ~ "
~ ~ n
M~
\ '
|
.
©]
< .
] o R N =
~ o P~
~ < [Ta) '
S S ' S
~ ~) =

FIG 8

US 9,226,003 B2

1
METHOD FOR TRANSMITTING VIDEO
SIGNALS FROM AN APPLICATION ON A
SERVER OVER AN IP NETWORK TO A
CLIENT DEVICE

RELATED APPLICATIONS

This application is a national phase application filed under
35 USC §371 of PCT Application No. PCT/EP2012/066628
with an International filing date of Aug. 27, 2012, which
claims priority to FEuropean Patent Application No.
11006978.8, filed Aug. 26,201 1. Each of these applications is
herein incorporated by reference in their entirety for all pur-
poses.

TECHNICAL FIELD

This invention belongs into the field on telecommunica-
tions, particularly to systems and methods of transmitting
video signals from an application on a server over an IP
network to a client device, e.g., internet protocol TV (IPTV)
device, mobile device, or PC, for providing services com-
bined with advanced interactive applications such as voice or
video calling, video gaming, video surveillance, video on
demand (VOD), etc.

BACKGROUND ART

Current operating systems typically include a graphical
drawing interface layer that is accessed by applications in
order to render drawings on a display, such as a monitor. The
graphical drawing interface layer provides applications an
application programming interface (API) for drawings and
converts drawing requests by such applications into a set of
drawing commands that it then provides to a video adapter
driver. The video adapter driver, in turn, receives the drawing
commands, translates them into video adapter specific draw-
ing primitives and forwards them to a video adapter (e.g.,
graphics card, integrated video chipset, etc.). The video
adapter receives the drawing primitives and immediately pro-
cesses them, or alternatively, stores them in a First In First Out
(FIFO) buffer for sequential execution, to update a frame-
buffer in the video adapter that is used to generate and trans-
mit a video signal to a coupled external display.

Client-server based solutions are becoming more and more
widespread. In such solutions, the client has relatively limited
to very limited resources, e.g., in terms of limited processing
power, limited memory resources, or limited power supply.
Also, the communication channel between server and client
device almost always tends to be limited, having limited
bandwidth, or high latency.

Client-server based solutions include remote desktop man-
agement, thin client applications, but also applications
streaming video signal into a client device such as smart
phone or, for example, client devices such as settop box
(STB), including for Internet TV or Internet Protocol TV
(IPTV). Such applications include TV programming, VOD,
video games, video communication solutions, video surveil-
lance solutions, etc.

While mainframe—terminal solutions have been around
since the very beginning of computers, dedicated lines were
used to connect mainframe to the monitor. Today the chal-
lenge is that for video signal, often an Internet Protocol (IP)
based connection channel is used to connect server and client.
Applications are hosted on remote servers (or virtual
machines running thereon) in a data centre. A thin client
application installed on a user’s terminal connects to a remote

10

15

20

25

30

35

40

45

50

55

60

65

2

desktop server that transmits a graphical user interface (GUI)
of'an operating system session for rendering on the display of
the user’s terminal. One example of such a remote desktop
server system is Virtual Computing Network (VNC) which
utilizes the Remote Framebuffer (RFB) protocol to transmit
framebuffers (which contain the values for every pixel to be
displayed on a screen) from the remote desktop server to the
client. While from the client device requirements viewpoint,
the goal is that all the image processing is performed on a
server side, it would result in extremely large amounts of raw
data to be transmitted from server to client device (e.g., foran
image resolution of 1920x1200 and color depth of 24 bits per
pixel at a rate of 60 times per second would require transmit-
ting 3.09 Gb/s (gigabits per second). One approach is to use
spatial compression, i.e., each frame is compressed using
lossless or lossy encoding, such as Discrete Cosine Transform
(DCT).

Additionally, only those parts of the frame that have
changed compared to previous frame should be transmitted
from the server to the client. For that purpose, the frame is
divided into subparts and on server side, each subpart is
compared with the subpart of a previous frame. For example,
current frame is saved in a primary buffer and a previous
frame is saved in a secondary buffer. Solutions exist were only
those areas (blocks) are updated from primary buffer to a
secondary buffer that have changed.

Both spatial and temporal compression is required in the
server side, resulting in need on the client side to easily
decode the signal without overburdening the client device.

Encoding and decoding are widely used in video transmis-
sion. MPEG2 and MPEG 4 (H.264) are industry standards
and widely used. Video signal is first encoded, using both
spatial and temporal compression. Spatial compression is
performed within a frame similarly to compression used for
JPEG and is based on DCT, that describes a set of pixels by a
set of superimposed cosine waveforms. DCT is applied to 8x8
pixel blocks. Additionally, temporal compression is used.
MPEG2 uses 3 types of frames [, B, P, I frame is fully encoded
frame. P is predicted frame, based on I frame. P can be
decoded only after previous I frame is decoded. B is bi-
directionally predicted frame, based on both I and P frame.
Further, in addition that there are 3 types of frames, each type
of frame comprises blocks that can be I, B or P type. I frames
contain only I type blocks, P frames contain I or P type blocks
and B type frames contain I, B or P type blocks. Additionally,
each macroblock (16x16 pixels) can introduce a motion vec-
tor, useful, e.g., for camera panning. Most client devices, such
as settop boxes, smart or mobile phones, thin clients, etc.,
usually include MPEG?2 and/or MPEG4 decoder.

Known is U.S. Pat. No. 7,649,937 (published as US2006/
0020710), disclosing a method of to deliver real-time video
data over the Internet. A streaming processor receives raw
video data from a video source; the video data is compressed
by grouping pixels into blocks and comparing blocks of adja-
cent (i.e., consecutive in time) frames of video data to identify
any changes. Only blocks that have been changed are trans-
mitted. In addition, if a block has changed to a previously
transmitted block, then only an identification index for the
block is transmitted. The actual content of the block can then
be recreated by comparing the index to a list of previously
received blocks. This method requires storing on a server at
least two adjacent (consecutive) frames and comparing such
frames pixel by pixel, or block by block to identify any
changes.

Known is GB2318956, disclosing a display screen dupli-
cation system and method for maintaining duplicate copies of
all or a portion of a display screen at two or more computer

US 9,226,003 B2

3

systems. The display screens are segmented into a two-di-
mensional matrix of blocks. A value, e.g., CRC, is computed
for each of the blocks and stored with a pointer to the corre-
sponding block of the display screen. Changes in the display
screen are detected by repeatedly calculating the values and
comparing with previously stored values for the correspond-
ing block. When the values are different, the pointers are
temporarily stored until a predetermined period of time or all
the blocks have been checked. When at least one of these
criteria is met, adjacent blocks are transmitted as a group,
preferably using compression. This method requires repeat-
edly comparing consecutive display screens block by block.

Known is U.S. Pat. No. 4,823,108, describing a method for
displaying information in overlapping windows on a video
display of a computer controlled video display system inde-
pendent of the operating system of the computer. The com-
puter program output display data can be written within win-
dows on the video display without substantial modification of
the application program by writing such data to a pseudo
screen buffer for temporary storage. The contents of the
pseudo screen buffer are then compared with the contents of
a previous image buffer at selected, timer-controlled inter-
vals. At memory locations where the data differs, the differing
data are written into the previous image buffer. As display
data is thereby identified and periodically updated, it is dis-
played in selected windows. This method requires comparing
consecutive image buffers and updating the image buffer
accordingly.

Known is WO00/65464, disclosing a system and method
for controlling information displayed on a first processor-
based system, from a second processor-based system. The
apparatus comprises a memory to store instruction sequences
by which the second processor-based system is processed,
and a processor coupled to the memory. The stored instruc-
tion sequences cause the processor to: (a) examine, at a pre-
determined interval, a location of a currently displayed
image; (b) compare the location with a corresponding loca-
tion of a previously displayed image to determine if the pre-
viously displayed image has changed; (c) transmitting loca-
tion information representing the change; and (d) storing the
changed information on the first processor-based system.
Specifically the CPU keeps a record of the location of the
most recent changes, and examines those locations more fre-
quently. This technique is based on the assumption that a
change will very likely occur close the location of a most
recent change involving an input/output device activity.

Known is U.S. Pat. No. 5,241,625, disclosing a system for
remotely controlling information displayed on a computer
screen by intercepting output events such as graphics calls.
Graphics commands which drive a computer window system
are captured and saved as a stored record or sent to other
computers. A message translation program translates the cap-
tured messages for playback on a designated computer.

Known is U.S. Pat. No. 5,796,566, disclosing a system in
which sequences of video screens forwarded from a host CPU
to a video controller, are stored and subsequently retrieved by
a terminal located remote from the host CPU. In particular,
display data is captured in a local frame buffer which stores
the display data frame by frame. A previous frame or screen of
display data is compared with a current frame or screen of
display data to determine if a change has occurred.

Known is U.S. Pat. No. 7,882,172 (published as US2007/
268824), disclosing a thin client system for a high-quality
picture reproduction method for using a thin client terminal as
TV phone terminal and a TV conference terminal. The
method (FIG. 4 of the patent) comprises on a screen data
transmission side: initializing the screen block table e.g. by

20

35

40

45

55

4

setting each block data of the table to a default value; if an
update is detected in the screen information, control enters a
loop to transmit the differential data to the remote controller,
comprising sequentially reading screen information from the
VRAM from the upper-left block to the lower-right block; in
the first screen monitor loop, obtaining screen block data
corresponding to the block number designated by the VRAM;;
next, comparing the screen block data with data of the asso-
ciated block number stored in the screen block table; if the
data matches with the data stored in the table, it is determined
that the screen has not been updated. Control returns to pro-
cessing to acquire next block data; if it is determined as a
result of data comparison that the data does not match each
other, it is recognized that the screen has been updated and the
obtained screen block data is stored as the value of the asso-
ciated block number; the screen block data is compressed; the
compressed block data is sent together with the block number
to the remote controller; the sequence of processing steps are
repeatedly executed at a predetermined interval of time; on a
screen data reception processing side, the screen block data is
received and is written into VRAM-CL to thereby display an
updated screen on the display of the terminal; first, the block
number and the screen block data are received; the screen
block data compressed as above is expanded or decom-
pressed; the decompressed data is written in an associated
area of the VRAM-CL corresponding to the block number. As
aresult, the contents of the screen update are presented on the
display; finally, the sequence of processing steps are repeat-
edly executed until the process is terminated. It is possible
that only the blocks in which a change takes place in the
screen is efficiently transmitted.

This may be considered the closest known solution. How-
ever, according to this method, the received blocks are first
expanded or decompressed and then stored in a VRAM-CL.
Such method cannot be used or has no advantages if the thin
client device is equipped with industry standard video
decoder such as MPEG?2 or H.264.

DISCLOSURE OF INVENTION

What is needed is better and more efficient method of
transmitting video signals over an IP network to a client
device with limited resources as to processing power,
memory, or power resources, such as an IPTV device or
mobile devices such as smart phone. The goal of the invention
is to further reduce the amount of data to be transferred over
the IP network from a server to a client device. Another goal
is to provide low latency transmission over the IP network
from a server to a client device. Further goal of the invention
is that the invented method does not require additional pro-
cessing power on the client device. Further goal of the inven-
tion is to provide a method that can make use of an industry
standard decoding method on the client side even though the
video signal transmitted over the [P network is not that indus-
try standard signal. Another goal of the invention is a method
that can be used for applications, requiring receiving by the
server video signals also from the client side, i.e., video
conferencing, video gaming, etc.

These and other goals of the invention are achieved by a
method for transmitting a video signal over an IP network
form a first application running on a server to a client device,
said first application generating a video output that is
intended to be shown as images on a display device as fol-
lows. The first application is drawing its content into a virtual
frame buffer in a plurality of consecutive drawing events. A
drawing event being any output command generated by the
application intended to change the image on the display

US 9,226,003 B2

5

device by changing the content of the frame buffer, regardless
of any specific hardware, software, libraries, or software lay-
ers used. The content represents images to be shown, each
such image comprising of a plurality of pixels, the virtual
frame buffer thus at each moment of time comprising the
freshest complete image. Simultaneously, each drawing event
is entered into a list of drawing events. Each drawing event is
associated in the list of drawing events with data defining the
area (or areas) of the image that was (were) affected by the
corresponding drawing event. These steps are repeated as
long as the first application is running.

Then, repetitively, at discrete time intervals, it is deter-
mined directly from the list of drawing events, which area (or
areas) of the image have been changed by any drawing events
since previous determination one discrete time interval ear-
lier. Such area (or areas) of image is (are) segmented into one
or more blocks of pixels, said blocks having predetermined
size. Such blocks are stored, together with their identification
data, in an output buffer of blocks of predetermined size.
More than one subsequent in time blocks may be stored in the
output buffer so that temporal compressing methods can be
used. Then, periodically, at periodic time intervals, said
blocks stored in an output buffer are encoded together with
their identification data and said encoded blocks are transmit-
ted over the IP network to the client device.

According to one preferred embodiment, the method fur-
ther comprises a step of optimizing the list of drawing events
by removing events that have changed any area that is also
changed by a later event in the list, by scanning the list for
events that have changed areas that partially overlap, and
combining such overlapping areas into a set of non-overlap-
ping rectangular areas, or both such steps.

According to one embodiment, the lengths of said discrete
time intervals are adjusted depending on the frequency of
drawing events, i.e., depending on how often the drawing
events occur. For example, shorter time interval may be pre-
ferred when the drawing events occur more often, thereby
keeping the list of drawing events shorter. According to one
embodiment, said segmenting takes place immediately when
the drawing event occurs. In other words, each of said discrete
intervals is determined by and is equal to a time interval
between two successive drawing events.

On the client side, the method comprises receiving said
encoded blocks with their identification data; storing said
encoded blocks in a buffer, according to their identification
data; and periodically receiving and assembling said encoded
blocks from said buffer, into encoded frames of an encoded
video stream, suitable for being decoded by a decoder in said
client device. Such encoded video stream can be directly fed
to a decoder in said client device to be decoded and shown on
a display of a client device. The decoder is preferably an
industry standard video decoder, capable of decoding video
streams in video standard format, such as MPEG2 or H.264
format. Also the block size may be determined by that decod-
ing method. For example, for MPEG2 and H.264 the suitable
blockis 16 by 16 pixels (so called macroblock). It is important
to appreciate, that while standard decoder can be used on the
client side without any modifications, the signal on the server
side is not coded according to this standard and no such
coding device is needed on the server.

The periodic time interval for outputting encoded blocks in
the server side may be determined by a nominal frame rate of
said decoder in said client device. E.g., for a MPEG2 decoder
with nominal frame rate 25 fps, the periodic time interval may
be chosen 1 /25 fps=40 ms. In a more preferred embodiment,
said periodic time interval for outputting encoded blocks in
the server side is further adjusted by feedback from the client

10

15

20

25

30

35

40

45

50

55

60

65

6

side so that a decoder input buffer that is receiving said
encoded video stream, comprises not more than a preset
number of frames (preferably, from 1 to 100, more preferably
from 2 to 6). Generally, the periodic time interval is chosen so
that the periodic checks take place 24 to 60 times per second.

The method can be used also for video calling, for video
conferencing, for video gaming and video surveillance, or
other applications, where also receiving a video signal from
the client side is necessary. In this case, the method comprises
further steps of creating a virtual camera device on the server
side, the first application making calls (i.e., requests) to the
virtual camera device, intercepting said calls made by the first
application to the virtual camera device, transmitting the
intercepted calls over the IP network to a camera that is
connected to or integrated with the client device over a com-
puter hardware bus (such camera may be a USB device, or a
camera integrated into a mobile device), transmitting
encoded a video signal from the camera over the IP network
to the server and forwarding the encoded said video signal
through the virtual camera device to the first application.

The method may further comprise running a third applica-
tion on the client device, wherein the third application is
adapted to receive a video signal from the camera and to
forward the encoded video stream over the IP network to a
second application running in the server, wherein the second
application is receiving and processing the video stream,
wherein said processing includes encoding and transcoding,
when necessary, thereby feeding the first application with the
video stream obtained by the third application from the cam-
era of the client device.

The client device—such as IPTV device, a set-top box,
including non-IPTV set-top box, OTT set-top box, digital TV
set-top box, cable TV box, etc; smart phone, pocket PC, tablet
PC, a mobile phone, a PC, or an internet connected TV, such
as Smart TV, or gaming console—is equipped with an input
device for receiving control events, the method comprises
forwarding the control events over the IP network to the first
application running on a server, thereby allowing interaction
between the client device and the first application. Such input
device may be a remote control, a keyboard, a mouse, a
motion sensing input device, or a touch sensor, etc.

The method may further comprise receiving control events
from a separate (i.e., independent from said client device)
control device, connected to said server over an IP network.
Such control device could be a smart phone, a mobile phone,
pocket PC, tablet PC, a mobile phone, or a PC, etc.

The method may further comprise receiving video signals
from a separate (i.e., independent, i.e., not connected to and
not integrated with said client device) web camera, connected
to said server over an IP network. The web camera may
comprise functionalities to be connected to IP network (an IP
camera), or may be connected through an additional IP cam-
era adapter.

In a preferred embodiment, the first application on a server
side is run on a virtual machine. Many virtual machines may
be created on said server, each virtual machine running an
application for its own client.

The goal of the invention is also achieved by a method of
transmitting a video signal from an application running on a
server over an [P network to a client device. The application
is drawing its content (its output images), as in a plurality of
sequential drawing events, into a virtual frame buffer. Simul-
taneously, each drawing event is registered in a list of drawing
events and each drawing event is associated with an address
(location) in a frame (also, in a virtual frame buffer) of each
block that was affected by this drawing event. The list of
drawing events is periodically checked and if any of the

US 9,226,003 B2

7

blocks within frame have changed since previous periodic
check, such block is retrieved from the virtual frame buffer
and is transmitted, together with its address in a frame, over
the IP network to the client.

On the client side, in the client device the blocks are
received and are combined, using the address data, into
frames of a video stream.

While uncompressed blocks may be transmitted in some
cases, preferably, on the server side, the blocks are encoded,
e.g., spatially compressed, using proprietary or industry stan-
dard compressing methods, e.g., DCT, before the blocks are
transmitted.

On the client side, the received encoded blocks are stored
into a virtual frame buffer, using their address data. The
content of the virtual frame buffer is periodically retrieved as
a frame of an encoded video stream. The encoded video
stream is then inputted into a decoder and the decoded stream
is then to the display of the client device. While proprietary
coding and decoding can be used, in a preferred embodiment,
the blocks are assembled into frames so that industry standard
decoding method can be used by the client device. In particu-
larly preferred embodiment, a decoding method already sup-
ported by the client device is used. For example, if the client
device is an IPTV device or other set-top box), it typically
already supports MPEG2 and/or H.264 video decoding.
Then, the blocks are assembled so that the frames can be
decoded using MPEG?2 and/or H.264 video coding.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a method known from background art and FIG. 2
is another method known from background art.

FIG. 3 is a flow diagram showing the steps of the method
carried out on the server side according to one embodiment of
the invention and FIG. 4 is a flow diagram showing the steps
of the method carried out on the client side according to one
embodiment of the invention.

FIG. 5 is a diagram, further explaining the steps of the
method as shown on FIG. 3 and FIG. 6 is a diagram further
explaining the steps of the method as shown on FIG. 4.

FIG. 7 is a flow diagram of a method according to another
embodiment of the invention and FIG. 8 is a diagram further
explaining the steps of the method as shown on FIG. 7.

MODE(S) FOR CARRYING OUT THE
INVENTION

FIG. 1, A to C describes background art known from
US20030093568, where frame 70 comprises nine blocks A to
1, whereas blocks A, B, D, E have one size (e.g., 64 to 64) an
DEFGHI have different size (e.g., 48 to 48 pixels). Those
blocks are sent to the client device and cached. Now, when
blocks change, the changed blocks 72 J, K, L., M and N only
are transmitted to the client device and cached. Again, when
blocks change, only changed blocks 74 O and P are transmit-
ted. Then, the frame is rebuilt from cached blocks and dis-
played.

FIG. 2 describes another background art known from
EP2244183 where on server side, not just one frame is stored,
but current frame is stored in primary frame buffer and pre-
vious frame is held in secondary frame buffer. To reduce the
amount of data that is copied from primary frame to a sec-
ondary frame, the frame 200 is divided into subblocks 215 et
al (e.g., 64 to 64 frame is divided to 64 8 by 8 subblocks) and
the status of changed subblocks is kept in the form of table
205. Only the marked subblocks are copied. The method is
used to speed up the copying process on the server

20

30

40

45

50

8

FIG. 3 is a flow diagram of the steps of the method on the
server side according to one embodiment of the invention.
FIG. 5 further explains the same method. An application is
running on a server and is generating a video output that is
intended to be shown to the user as an image on a display
device. In step 100 the application is drawing its content into
a virtual frame buffer 111 in a plurality of consecutive draw-
ing events 112. The virtual frame buffer thus at each time
moment always comprises the freshest image 113 comprising
of several blocks 114 to 122. Simultaneously, in step 101,
each drawing event (123 and 124) is entered into a list of
drawing events 125, where it is associated with identification
of a block that was affected by this drawing event. The iden-
tification may be coordinates of the block, address of the
block, or just a number of the block. All the drawing methods
known in the art may be used. Each drawing event may affect
one or more blocks as shown by areas 126 and 127 on FIG. 4.
As step 102, the list of drawing events is periodically (e.g., at
the refresh rate of the typical display device, e.g., from 24
times per second up) checked and if any of the blocks have
changed since previous periodic check, such blocks (e.g.,
blocks 114, 118 and 119) are retrieved from the virtual frame
buffer and are, in step 103, combined together with their
addresses in a frame, into a data stream 128. Then, in step 104,
the data stream is preferably encoded, e.g., spatially com-
pressed, and in step 105, the encoded data stream 129 is sent
to the IP network 130. Of course, it is apparent that when the
application is first started, all the blocks are new and must be
transmitted after first periodic check. Later, however, only
changed blocks are transmitted. Depending on the nature of
the application, the changes may occur in only few blocks of
alarge image, or the changes may occur much less frequently
compared to the frequency of periodic checks (i.e., the refresh
rate).

FIG. 4 is a flow diagram of the steps of the method on the
client side. FIG. 6 further explains the method. As step 106,
the encoded data stream 129 is received over the IP network
130. In step 107, the received encoded blocks are stored in a
storage, e.g., in client device’s virtual frame buffer 131. Thus,
the buffer always contains all the received encoded blocks
needed for composing the freshest full image (frame) to be
shown. As step 108, the frame 132 is then periodically (e.g., at
the frame rate of the decoder, usually using the same or
different frequency as on the server side) read from the stor-
age and combined into an encoded video stream of frames. As
step 109, the video stream of frames is then decoded into a
decoded video stream 132, using a decoding method sup-
ported by the client device. As step 110, the video stream is
outputted to a client display device.

While uncompressed blocks may be transmitted in some
cases, usually it is preferable that, on the server side, the
blocks are spatially compressed, using proprietary or industry
standard compressing methods such as Discrete Cosine
Transform (DCT) before the blocks are transmitted.

On the client side, the encoded blocks are assembled into
encoded frames, the frames are assembled into an encoded
stream of frames and then the encoded stream can be
decoded. While proprietary coding and decoding can be used,
in a preferred embodiment, the encoded blocks are assembled
into encoded frames and the encoded frames into the encoded
stream of frames so that industry standard decoding method
can be used by the client device. In particularly preferred
embodiment, a decoding method already supported by the
client device is used. For example, if the client device is an
IPTV device, such as a settop box (STB), it typically already
supports MPEG2 and/or H.264 video decoding. Then, the

US 9,226,003 B2

9

blocks are assembled so that the frames can be decoded using
MPEG?2 and/or H.264 video coding.

In client device, the received blocks are stored in a buffer,
using the address data. The content of the buffer is periodi-
cally retrieved, decoded and outputted to the display of the
client device.

Preferably, an industry standard encoding is used so that no
or minimum extra processing power is needed on a client
device. E.g., if the client device is a STB in an IPTV system,
it most likely already includes a MPEG2 (or H.264) decoder.
The same applies ifthe client device is a smartphone, a pocket
PC, or other similar device. However, according to MPEG2
and H.264, full frames are transmitted, while according to
invented method only changed parts of the frame are trans-
mitted. The solution is that in the client side, a list of current
parts of the frame is kept and when new changed parts arrive,
they are combined with the parts of the frame already existing
on the client device and then the frame is decoded. It is
important to understand that no MPEG2 encoding is per-
formed on the server side, but spatial compression, e.g., based
on DCT of blocks may be carried out.

The block size is preferably matched to the coding method.
E.g.,ifMPEG2 decoding is used, then it is most advantageous
to use so called macroblocks as defined by MPEG2 standard,
i.e.,blocks 0f 16 by 16 pixels. Then it is easiest to combine the
encoded blocks into a full encoded frame on the client side.
Also, then also temporal compression according to MPEG2
standard can be used when subsequent frames are saved (e.g.,
cached) on a server side prior to coding and sending over the
IP network.

The method is particularly useful for IPTV, internet TV and
OTT solutions where the operators would like to provide
additional services such as video gaming, video calling and
video conferencing, video surveillance, video-on-demand
(VOD), but the client devices (so called set top boxes, STB)
does not have enough processing power and/or other
resources to run such additional applications in a client
device. On the other hand, many such applications are not
adapted to run over a network. According to the invented
method, such applications may be run on a server side and
only their video output that would be ordinarily sent to the
display device, are according to the invention instead sent
over an [P network to a client device (STB). Preferably, the
server comprises several virtual machines and each applica-
tion is run on a different virtual machine. Thus, applications
for each client are separated, making the system more secure
and more reliable (error-proof).

The method according to second embodiment is explained
with reference to FIGS. 7 and 8. Similarly to the first embodi-
ment, an application is running on a server and is generating
a video output that is intended to be shown (as a series of
images, or as a video) on a display device. In step 700 the
application is drawing its content into a virtual frame buffer
711 in a plurality of consecutive drawing events 712, each
such event affecting an area of the image (shown as 726 and
727 on FIG. 8). The virtual frame buffer thus at each time
moment always comprises the freshest image 713 that is
intended by the first application to be shown on a display of
the client device. Simultaneously, in step 701, each drawing
event (shown as 723, affecting area 726, and 724 affecting
area727 on FIG. 8) is entered into a list of drawing events 725,
together with data defining the area of the image that was
affected (i.e., overdrawn) by corresponding drawing event.
The area may be defined, e.g., their address in a virtual frame
buffer, or by the corner coordinates of a polygon, which in
simplest cases may be a rectangular or a square shaped, or by
other means. Then, as step 702, at discrete time intervals,

10

15

20

25

30

35

40

45

50

55

60

65

10

repetitively determining directly from the list of drawing
events which areas of the image have been changed by said
drawing events since previous determination one discrete
time interval earlier, and as step 703, segmenting said
changed areas of the image into one or more blocks of pixels,
wherein said blocks having predetermined size (e.g., 16 by 16
pixels), and storing (step 704) such predetermined size blocks
together with their identification data in an output buffer 728.
Then, as step 705, at periodic time intervals, such blocks
stored in the output buffer are encoded together with their
identification data into a stream of encoded data 729, and such
encoded blocks are transmitted in step 706 over the IP net-
work 730 to the client device.

On the client side, the method comprises, as step 707,
receiving said encoded blocks with their identification data
and storing said encoded blocks in a buffer 731, according to
their identification data (step 708). Thus, the buffer always
contains all the received encoded blocks needed for compos-
ing the freshest full image (frame) to be shown. Then, as step
709, said encoded block are periodically retrieved from said
buffer, and assembled into encoded frames of an encoded
video stream 732, suitable for being sent to and decoded by a
decoder in said client device. Such encoded video stream can
be directly fed into a decoder in said client device to be
decoded and shown on a display of a client device. The
decoder is preferably an industry standard video decoder,
capable of decoding video streams in video standard format,
such as MPEG2 or H.264 format. Also the block size may be
determined by that decoding method. For example, for
MPEG2 and H.264 the suitable block is 16 by 16 pixels (so
called macroblock). It is important to appreciate, that while
standard decoder can be used on the client side without any
modifications, the signal on the server side is not coded
according to this standard and no such coding device is
needed on the server.

The discrete time interval of step 702 on the server side
may be constant (e.g., 10 ms, 20 ms, 30 ms, 40 ms, etc),
adjustable, e.g., according to the desired length of list of
events, or according to the total number or size of areas
changed since previous determination, etc., or adjustable
according to the periodic time interval for outputting encoded
blocks.

The periodic time interval for outputting encoded blocks in
the server side may be determined by a nominal frame rate of
said decoder in said client device. E.g., fora MPEG2 decoder
with nominal frame rate 25 fps, the periodic time interval may
be chosen 1 /25 fps=40 ms. In a more preferred embodiment,
said periodic time interval for outputting encoded blocks in
the server side is further adjusted by feedback from the client
side so that a decoder input buffer that is receiving said
encoded video stream, comprises not more than a preset
number of frames. Generally, the periodic time interval is
chosen so that the periodic checks take place 24 to 60 times
per second.

The methods as described may comprise a step of optimi-
zation by consolidating the events in the list of events to
optimize the process. The step of optimizing the list of draw-
ing events is carried out before retrieving the blocks from the
virtual frame buffer according to first example, or before
segmenting the areas according to second example. The step
of optimizing comprises first removing events that have
changed the area of the image, if exactly the same area is also
changed by a later event in the list. Secondly, further optimi-
zation is accomplished by scanning the list for events that
have changed areas that partially overlap, and combining
such overlapping areas into a set of non-overlapping, prefer-
ably rectangular areas.

US 9,226,003 B2

11

The methods as described may further comprise a step of
controlling the buffer size on the client device by adjusting the
periodic time interval for outputting encoded block in the
server (steps 105 and 706 correspondingly). Generally, the
periodic time interval for outputting encoded blocks in the
server side is fixed, or may be determined by a nominal frame
rate of said decoder in said client device. E.g., for a MPEG2
decoder with nominal frame rate 25 fps, the periodic time
interval may be chosen 1 s/25 fps=40 ms. However, a pre-
ferred embodiment, said periodic time interval for outputting
encoded blocks in the server side is further adjusted by feed-
back from the client side so that a decoder input buffer that is
receiving said encoded video stream, comprises not more
than a preset number of frames. It is accomplished by slightly
increasing the periodic time interval so that the actual output-
ting rate is, e.g., 24, 9 frames per second for a nominal frame
rate of 25 frames. The number of frames thus in the output
buffer can be kept, e.g., preferably, from around 2 to 5. This
allows quick response time, when user request is received
from the client device and the display must be updated as a
response to this user request.

The methods as described are suitable for video transmis-
sion from a server to a client where client to server video
transmission is not required. Such applications include most
of'the video games, remote desktop applications, but also TV
and video streaming. For many applications, such as video
calling, video conferencing, some video games and video
surveillance applications also video transmission from the
client device to the server is required. However, as was the
presumption from the beginning, the client device has limited
resources. One or the other resource may be more limiting in
particular situations. For example, for IPTV devices, gener-
ally no extra processing power is available. For mobile
devices, for modern devices, the processing power may be
less limiting than the power consumption (hence, the battery
life) and for slower and/or overloaded networks, the quality of
the network connection in terms of both bandwidth and
latency may be the biggest issue. A video transmitting device
with video encoding (compressing) capabilities is therefore
used with client device. The problem now becomes, however,
that the application running on the server is typically adapted
to work with a camera that is connected to the server, and thus,
the first application cannot find nor use instead the camera
that is connected to the client device. To solve this problem,
the method is further modified by creating a virtual camera
device on the server side, intercepting calls (i.e., the requests)
by the application to the virtual camera device, transmitting
the intercepted calls to the camera connected to the client
device, transmitting signals from camera over the IP network
to the server where the application can receive the signal from
the virtual camera device.

The method may be modified to comprise running a third
application on the client device, wherein the third application
is adapted to receive a video signal from the camera and to
forward the encoded video stream over the IP network to a
second application running in the server. The second appli-
cation is receiving and processing the video stream. The
processing may include, e.g., encoding or transcoding, when
necessary, thereby feeding the first application with the video
stream obtained by the third application from the camera of
the client device.

Similarly, when the client device is a mobile device, similar
but modified approach may be used to connect with a camera
of the mobile device. Similarly, when the first application
running on a server is trying to use a camera, it sends calls to
a virtual camera device instead of a real device. The calls are
intercepted by a second application running on a server

40

45

55

65

12

wherein the second application generates such responses to
the calls as a real video device would have. In a mobile device,
athird application is running, wherein the third application is
adapted to receive encoded video stream from the camera of
the mobile device and to forward the video stream over the IP
network to the second application running in the server,
wherein the second application is receiving the video stream
and is decoding it. Thus, the second application is feeding the
first application the video stream obtained by the third appli-
cation from the camera of the mobile device.

The client device—such as IPTV device, a smart phone,
pocket PC, tablet PC, a mobile phone, a PC, or an internet
connected TV—is preferably equipped with an input device
for receiving control events. The control events are forwarded
over the IP network to the first application running on a server,
thereby allowing interaction between the client device and the
first application. Such input device may be remote control,
keyboard, mouse or a touch sensor, etc.

The control events may be also received from a separate
(i.e., independent from said client device) control device,
connected to said server over an IP network. Such control
device could be a smart phone, a mobile phone, pocket PC,
tablet PC, a mobile phone, a PC, etc.

Also the video signals may be received from a separate
(i.e., independent, i.e., not connected to and not integrated
with the client device) web camera, connected to said server
over an [P network. The web camera may be adapted to be
connected to IP network (an IP camera), or may be connected
through an additional IP camera adapter. Also a mobile device
such as mobile phone, smart phone, tablet PC, or like with
camera, may be used as a separate, independent source of
video signals.

In a preferred embodiment, the first application on a server
side is run on a virtual machine. Many virtual machines may
be created on said server, each virtual machine running an
application for its own client.

The invention claimed is:

1. Method for transmitting a video signal over an IP net-
work from a first application running on a server to a client
device, said first application generating a video output that is
intended to be shown as images on a display device, the
method comprising:

said first application drawing its content into a virtual

frame buffer on said server, in a plurality of consecutive
drawing events, said content representing images to be
shown, each such image comprising of a plurality of
pixels, the virtual frame buffer thus at each moment of
time comprising the freshest image;

entering each drawing event into a list of drawing events

together with data defining the image area that was

affected by the corresponding drawing event;

repetitively, at discrete time intervals
1. determining directly from the list of drawing events,
which areas of the image have been changed by said
drawing events since previous determination one dis-
crete time interval earlier; and
2. segmenting said changed areas of the image into one
or more blocks of pixels, said blocks having predeter-
mined size;
storing such predetermined size blocks together with their
identification data in an output buffer; and

periodically, at periodic time intervals, encoding said
blocks stored in the output buffer together with their
identification data and transmitting said encoded blocks
over the IP network to the client device.

2. A method according to claim 1, further comprising a step
of optimizing the list of drawing events by removing events

US 9,226,003 B2

13

that have changed the area, if the same area is changed by a
later event in the list, and by scanning the list for events that
have changed overlapping areas, and combining such over-
lapping areas into a set of non-overlapping rectangular areas.

3. A method according to claim 1, wherein the lengths of
said discrete time intervals are adjusted depending on the
frequency of drawing events.

4. A method according to claim 1, comprising on the client
device, receiving said encoded blocks with their identifica-
tion data; storing said encoded blocks, in a buffer according to
their identification data; and periodically receiving and
assembling said encoded blocks from said buffer, into
encoded frames of an encoded video stream, such encoded
video stream suitable for being decoded by a decoder in said
client device.

5. A method according to claim 4, wherein said periodic
time interval for outputting encoded blocks in the server side
is determined by a nominal frame rate of said decoder in said
client device.

6. A method according to claim 5, wherein said periodic
time interval for outputting encoded blocks in the server side
is adjusted by feedback from the client side so that a decoder
input buffer that is receiving said encoded video stream, com-
prises not more than a preset number of frames.

7. A method according to claim 4, wherein said encoded
video stream is in a standard video standard format.

8. A method according to claim 7, wherein said encoded
video stream is in MPEG2 or H.264 format.

9. A method according to claim 4, wherein the block is of
the size that is matched to the block size as defined by the
decoding method used by the client device.

10. A method according to claim 9, wherein the block size
is 16 by 16 pixels.

11. A method according to claim 10, comprising keeping
on said server at least two subsequent in time blocks for
temporal compressing.

12. A method according to claim 4, wherein the application
run on a server side is run in a virtual machine.

13. A method according to claim 12, comprising creating a
virtual camera device on the server side, the first application
making calls to the virtual camera device, intercepting said
calls made by the first application to the virtual camera
device, transmitting the intercepted calls over the IP network
to a camera that is connected to or integrated with the client
device over a computer hardware bus, transmitting a video
signal from the camera over the IP network to the server and
forwarding said video signal through the virtual camera
device to the first application.

14. A method according to claim 13, wherein said camera
is a USB device or a camera integrated into a mobile device.

15. A method according to claim 13, wherein the method
further comprises running a third application on the client
device, wherein the third application is adapted to receive a
video signal from the camera and to forward the encoded
video stream over the IP network to a second application
running in the server, wherein the second application is
receiving and processing the video stream, wherein said pro-
cessing includes encoding and transcoding, when necessary,
thereby feeding the first application with the video stream
obtained by the third application from the camera of the client
device.

16. A method according to claim 4, wherein the client
device is equipped with an input device for receiving control
events, the method comprises forwarding the control events
over the IP network to the first application running on a server,
thereby allowing interaction between the client device and the
first application.

15

30

40

45

14

17. A method according to claim 6, wherein the client
device is equipped with an input device for receiving control
events to be transmitted to and to control the first application,
wherein said preset number of frames is selected low enough
so that the changes to the display state caused by the control
events will be presented on the display of said client device
with short delay.

18. A method according to claim 15, wherein a control
device is connected to said server over an IP network, said
control device adapted to receive control events from the user
and to transmit control events over the IP network to said first
application running on a server.

19. A method for transmitting a video signal from an IPTV
server over an [P network to an IPTV settop box to be dis-
played on a display device connected to or integrated with
said IPTV settop box, said method comprising:

a first application run on said IPTV server generating a
plurality of consecutive drawing events, each of said
consecutive drawing events changing at least one area of
a frame stored in a virtual frame buffer on said IPTV
server, so that the virtual frame buffer after each of said
consecutive drawing events contains the full image to be
shown on said display device;

entering each of said consecutive drawing events into a list
of drawing events together with data defining the image
area that was affected by said corresponding drawing
event;

repetitively, at discrete time intervals, determining directly
from the list of drawing events, which areas of the image
have been changed by said drawing events since previ-
ous determination one discrete time interval earlier; and
segmenting said changed areas of the image into one or
more blocks of pixels, said blocks having predetermined
size;

storing such predetermined size blocks together with their
identification data in an output buffer; and

periodically, at periodic time intervals, combining and
encoding said blocks stored in the output buffer together
with their identification data into a data stream of
encoded blocks;

transmitting said data stream of encoded blocks from said
IPTV server over the IP network to said IPTV settop
box; and

on said IPTV settop box, receiving said data stream of
encoded, storing each of said encoded block into a third
frame buffer according to corresponding identification
data of said encoded block so that at each moment of
time the third frame buffer contains the full image to be
shown on said display device, and

periodically retrieving said encoded blocks from said third
buffer and assembling said encoded blocks into an
encoded full image frame of an encoded video stream,
such encoded video stream suitable for being decoded
by a industry standard video decoder included in said
IPTV settop box.

20. A method according to claim 19, wherein said periodic
time interval for outputting encoded blocks in said IPTV
server is determined by a nominal frame rate of said decoder
of said IPTV settop box and adjusted by feedback from the
IPTV settop box so that a decoder input buffer that is receiv-
ing said encoded video stream, comprises not more than a
preset number of frames and wherein said IPTV settop box is
equipped with an input device for receiving control events to
be transmitted to and to control said first application, wherein
said preset number of frames is selected low enough so that

US 9,226,003 B2
15

the changes to the display state caused by the control events
will be presented on the display of said client device without
a substantial delay.

16

